首页> 外文OA文献 >Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge
【2h】

Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge

机译:在计算机断层扫描图像中自动检测肺结节的验证,比较和算法组合:LUNA16挑战

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automatic detection of pulmonary nodules in thoracic computed tomography (CT) scans has been an active area of research for the last two decades. However, there have only been few studies that provide a comparative performance evaluation of different systems on a common database. We have therefore set up the LUNA16 challenge, an objective evaluation framework for automatic nodule detection algorithms using the largest publicly available reference database of chest CT scans, the LIDC-IDRI data set. In LUNA16, participants develop their algorithm and upload their predictions on 888 CT scans in one of the two tracks: 1) the complete nodule detection track where a complete CAD system should be developed, or 2) the false positive reduction track where a provided set of nodule candidates should be classified. This paper describes the setup of LUNA16 and presents the results of the challenge so far. Moreover, the impact of combining individual systems on the detection performance was also investigated. It was observed that the leading solutions employed convolutional networks and used the provided set of nodule candidates. The combination of these solutions achieved an excellent sensitivity of over 95% at fewer than 1.0 false positives per scan. This highlights the potential of combining algorithms to improve the detection performance. Our observer study with four expert readers has shown that the best system detects nodules that were missed by expert readers who originally annotated the LIDC-IDRI data. We released this set of additional nodules for further development of CAD systems.
机译:在过去的二十年中,在胸部计算机断层扫描(CT)扫描中自动检测肺结节一直是研究的活跃领域。但是,只有很少的研究能够在一个通用数据库上提供不同系统的比较性能评估。因此,我们已经建立了LUNA16挑战,这是一个使用最大的胸部CT扫描公共参考数据库LIDC-IDRI数据集的自动结节检测算法的客观评估框架。在LUNA16中,参与者开发算法并将预测结果上传到两个轨迹之一中的888 CT扫描上:1)应开发完整CAD系统的完整结节检测轨迹,或2)所提供集合的假阳性减少轨迹结节候选人应分类。本文介绍了LUNA16的设置,并介绍了迄今为止所面临挑战的结果。此外,还研究了组合单个系统对检测性能的影响。据观察,领先的解决方案采用了卷积网络并使用了所提供的结节候选集。这些解决方案的组合在每次扫描少于1.0次假阳性时实现了超过95%的出色灵敏度。这凸显了组合算法以提高检测性能的潜力。我们对四位专业读者的观察研究表明,最好的系统能够检测出最初为LIDC-IDRI数据添加注释的专业读者所错过的结核。我们发布了这组附加结节,以进一步开发CAD系统。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号